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Introduction

• A ring R is a non-empty set together with two operations,
usually + and ×, satisfying certain properties, e.g., Z, Q,
R, C, R[x ] = {f = anxn +an−1xn−1 + · · ·+a1x +a0 | ai ∈ R}.

• Every non-zero integer except 1, and -1 can be expressed
uniquely as a product of prime numbers. We say that Z has
uniqueness of factorization of elements.

• Not all rings have uniqueness of factorization of elements. For
instance, in

Z[
√
−5] = {m + n

√
−5 | m, n ∈ Z},

6 = 2× 3 = (1 +
√
−5)(1−

√
−5).

Fermat’s Last Theorem
For n ≥ 3, xn + yn = zn, has no non-trivial solutions x , y , z ∈ Z.



Introduction

• Factorization theory involves investigating phenomena related
to non-uniqueness of factorizations in algebraic structures.

• To characterize arithmetical and algebraic properties of
algebraic structures in terms of factorization properties.

• Sets of lengths are the most studied objects in factorization
theory.



Introduction

Remark 1
In real life, non unique factorizations tell us that there can be other
ways of doing something or achieving a goal. For instance, the
different academic paths.
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Integer-valued polynomials

Definition 1
The ring of integer-valued polynomials is the ring

Int(Z) = {f ∈ Q[x] | ∀ a ∈ Z, f(a) ∈ Z} ⊆ Q[x ].

For example, 2x + 3 is in Int(Z)  Z[x ] ⊆ Int(Z). Also

f = 1
2x2 + 1

2x = x(x + 1)
2 ∈ Int(Z).

Remark 2 (Cahen & Chabert, 2016)
A polynomial f ∈ Q[x ] is in Int(Z) if

f(a) ∈ Z for all 0 ≤ a ≤ deg(f),

e.g., f = x2+x+3
3 6∈ Int(Z) since f (1) = 5

3 6∈ Z.
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More examples

1 f = x2+x+2
2 ∈ Int(Z) since f (0) = 1, f (1) = 2, and f (2) = 4.

2 A product of n consecutive integers is divisible by n!, e.g.,

x(x + 1)(x + 2)
6 ∈ Int(Z).

• Each binomial polynomial(
x
n

)
= x(x − 1)(x − 2) · · · (x − n + 1)

n! ∈ Int(Z).

3 For each prime number p, the Fermat’s polynomial
xp − x

p ∈ Int(Z) ⇐= ap ≡ a (mod p) ∀ a ∈ Z,

e.g., x7−x
7 ∈ Int(Z).
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Integer-valued polynomials on arbitrary domains

Definition 2
Let D be a domain with quotient field K . The ring of
integer-valued polynomials on D is

Int(D) = {f ∈ K[x] | ∀ a ∈ D, f(a) ∈ D} ⊆ K [x ]

Remark 3
1 For all f ∈ K [x ], f = g

b where g ∈ D[x ] and b ∈ D \ {0}.

2 f = g
b is in Int(D) if and only if b | g(a) for all a ∈ D.

For example, D[x ] ⊆ Int(D).
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Int(D) cont’d

Int(Z) is non-Noetherian.

Int(D) in general is not a unique factorization domain e.g., in
Int(Z),

x2 + x = x · (x + 1)

= 2 · x(x + 1)
2

(x − 1)(x − 2)(x − 3)
2 = (x − 1) · (x − 2)(x − 3)

2

= (x − 3) · (x − 1)(x − 2)
2
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Factorization terms

Let R be a commutative ring with identity.
1 A non-zero element u ∈ R is called a unit if there exists

b ∈ R such that ub = 1, e.g., the units of Z are {1,−1}.

2 A non-zero non-unit r ∈ R is said to be irreducible in R if
whenever r = ab, then either a or b is a unit, e.g., prime
numbers are irreducible in Z.

3 A factorization of r in R is an expression

r = a1 · · · an

where n ≥ 1 and ai is irreducible in R for 1 ≤ i ≤ n.
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Factorization terms cont’d

1 The length of the factorization r = a1 · · · an is the number of
irreducible factors n.

2 We say that r , s ∈ R are associated in R if there exists a unit
u ∈ R such that r = us. We denote this by r ∼ s, e.g.,
3 ∼ −3 in Z.

3 Two factorizations of the same element,

r = a1 · · · an = b1 · · · bm, (1)

are called essentially the same if n = m and, after a suitable
re-indexing, aj ∼ bj for 1 ≤ j ≤ m. Otherwise, the
factorizations in (1) are called essentially different.
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Factorization terms cont’d

In Z[
√
−5] = {m + n

√
−5 | m, n ∈ Z},

• 6 = 2× 3 = −2×−3 are essentially the same.

• 6 = 2× 3 = (1 +
√
−5)(1−

√
−5) are essentially different.

In Z[
√
−14] = {m + n

√
−14 | m, n ∈ Z},

• 81 = 3× 3× 3× 3 = −3× 3×−3× 3 are essentially the same.

• 81 = 3× 3× 3× 3 = (5 + 2
√
−14)(5− 2

√
−14) are

essentially different.
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Factorization terms cont’d

1 The set of lengths of r is

L(r) = {n ∈ N | r = r1 · · · rn}

where r1, . . . , rn are irreducibles. e.g.,

In Z[
√
−14], 81 = 3× 3× 3× 3 = (5 + 2

√
−14)(5− 2

√
−14) are

essentially different. L(81) = {2, 4}.
In Int(Z),

f = (x − 1)(x − 2)(x − 3)
2 = (x − 1) · (x − 2)(x − 3)

2

= (x − 3) · (x − 1)(x − 2)
2

L(f ) = {2, 2} = {2}.
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Sets of lengths in Int(D)

Theorem 1 (Frisch, 2013)
Let 1 < m1 ≤ m2 ≤ · · · ≤ mn ∈ N. Then there exists a polynomial
H ∈ Int(Z) with exactly n essentially different factorizations of
lengths m1, . . . , mn.

Say {2, 4, 5, 5}. Then there exists H ∈ Int(Z) such that
H = h1 · h2

= f1 · f2 · f3 · f4
= e1 · e2 · e3 · e4 · e5

= g1 · g2 · g3 · g4 · g5

.

Corollary 1
Every finite subset of N>1 is a set of lengths of an element of
Int(Z).

Definition 1
A domain D is said to have full system of sets of lengths if
every finite subset of N>1 is a set of lengths of an element of D.
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Sets of lengths in Int(D)

Question: Are there other domains D such that Int(D) has full
system of sets of lengths? YES

If D is a Dedekind domain such that;
1 D has infinitely many maximal ideals and
2 |D/M| <∞ for each maximal ideal M.

Then Int(D) has full system of sets of lengths.
Theorem 2 (Frisch, SN, Rissner, 2019)
Let 1 < m1 ≤ m2 ≤ · · · ≤ mn ∈ N. Then there exists a polynomial
H ∈ Int(D) with exactly n essentially different factorizations of
lengths m1, . . . , mn.

Examples of our Dedekind domains
1 Z.

2 Rings of integers of number fields, e.g., Z[
√
−5].
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Transfer mechanisms

Several monoids with full system of sets of lengths have been
obtained using transfer mechanisms. (Kainrath, 1999)

Definition 3
Monoids which allow transfer homomorphisms to block monoids
are called transfer Krull monoids.

• (Int(Z) \ {0}, •) is not a transfer Krull monoid. (Frisch, 2013)

• (Int(D) \ {0}, •) is not a transfer Krull monoid, where D is
Dedekind domain with infinitely many maximal ideals of finite
index. (Frisch, SN, Rissner, 2019) .
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I``ustrations of tools

For H ∈ Int(Z) with L(H) = {2, 3}, we start with
{n1, n2} = {1, 2}.

1 N = (
∑n

i=1 ni )2 −
∑n

i=1 n2
i , N = 4.

2 Pick a prime number p > N. Say p = 5.

3 Construct a complete system of residues mod p that doesn’t
contain a complete system of residues mod any prime less
that p, that is, from {0 + 5Z, 1 + 5Z, 2 + 5Z, 3 + 5Z, 4 + 5Z},
say C = {5, 1, 7, 13, 19}.

4 Let C = S ] T such that |T | = N, Say T = {5, 1, 7, 13}, and
set

s(x) =
∏
r∈S

x − r = x − 19.
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1 Arrange the elements of T = {5, 1, 7, 13} in an m =
∑n

i=1 ni
by m square matrix with diagonal blocks empty.

7 13

1

5
n2 = 2

n1 = 1

• f (1)
1 = (x − 7)(x − 13)(x − 5)(x − 1)

• f (2)
1 = (x − 5)(x − 7), f (2)

2 = (x − 1)(x − 13)
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• Set

h(x) = s(x) · f (1)
1 · f (2)

1 · f (2)
2

p .

• Replace each fi with a corresponding monic irreducible
polynomial Fi .

• f (1)
1 = (x − 7)(x − 13)(x − 5)(x − 1)

F (1)
1 = x4 + 24x3 + 16x2 + 4x + 30

• f (2)
1 = (x − 5)(x − 7)  F (2)

1 = x2 + 38x + 10

• f (2)
2 = (x − 1)(x − 13)  F (2)

2 = x2 + 36x + 38
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Set

H(x) = s(x) · F (1)
1 · F (2)

1 · F (2)
2

p .

Then H ∈ Int(Z) and factors as

H(x) = s(x) · F (2)
1 · F (2)

2
p · F (1)

1

= s(x) · F (1)
1

p · F (2)
1 · F (2)

2
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